Abstract

The Diels-Alder reaction rate constants of methyl vinyl ketone with cyclopentadiene and cyclohexadiene in the presence of a novel organotungsten catalyst, [P(2-py)(3)W(CO)(NO)(2)](2+), have been measured experimentally and modeled theoretically at several temperatures. The uncatalyzed systems were also studied for direct comparison. When 0.0022 M of catalyst is present at room temperature, the rate constants were found to be approximately 5.3 and 5300 times higher than the corresponding uncatalyzed reactions for cyclopentadiene and cyclohexadiene systems, respectively. Experimental data suggested that the catalyst reduced the activation energies by 5-10 kcal/mol. However, the preexponential factors showed reduction of more than 3 orders of magnitude upon catalysis due to the entropic effects. The energy barriers and the rate constants of the uncatalyzed systems were accurately modeled by correlated electronic structure and dual-level variational transition state theory calculation. The calculated endo selectivity is in good agreement with the observed product distribution. Theoretical calculation also suggested the catalyzed reactions proceeded in a highly asynchronous or even stepwise fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.