Abstract
The reactions of Cl atoms with cis- and trans-2-butene have been studied using FTIR and GC analyses. The rate constant of the reaction was measured using the relative rate technique. Rate constants for the cis and trans isomers are indistinguishable over the pressure range 10-900 Torr of N2 or air and agree well with previous measurements at 760 Torr. Product yields for the reaction of cis-2-butene with Cl in N2 at 700 Torr are meso-2,3-dichlorobutane (47%), DL-2,3-dichlorobutane (18%), 3-chloro-1-butene (13%), cis-1-chloro-2-butene (13%), trans-1-chloro-2-butene (2%), and trans-2-butene (8%). The yields of these products depend on the total pressure. For trans-2-butene, the product yields are as follows: meso-2,3-dichlorobutane (48%), dl-2,3-dichlorobutane (17%), 3-chloro-1-butene (12%), cis-1-chloro-2-butene (2%), trans-1-chloro-2-butene (16%), and cis-2-butene (2%). The products are formed via addition, addition-elimination from a chemically activated adduct, and abstraction reactions. These reactions form (1) the stabilized 3-chloro-2-butyl radical, (2) the chemically activated 3-chloro-2-butyl radical, and (3) the methylallyl radical. These radicals subsequently react with Cl2 to form the products via a proposed chemical mechanism, which is discussed herein. This is the first detailed study of stereochemical effects on the products of a gas-phase Cl+olefin reaction. FTIR spectra (0.25 cm(-1) resolution) of meso- and DL-2,3-dichlorobutane are presented. The relative rate technique was used (at 900 Torr and 297 K) to measure: k(Cl + 3-chloro-1-butene) = (2.1 +/- 0.4) x 10(-10), k(Cl + 1-chloro-2-butene) = (2.2 +/- 0.4) x 10(-10), and k(Cl + 2,3-dichlorobutane) = (1.1 +/- 0.2) x 10(-11) cm3 molecule(-1) s(-1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.