Abstract

Endothelin peptides (Et) induce slowly developing and long-lasting contractions of rat aortic strips with a rank order of potency (Et-1 = Et-2 greater than sarafotoxin S6b greater than Et-3) consistent with the involvement of an EtA-like receptor subtype. A similar profile of action is observed for Et-induced intracellular [Ca2+]i mobilization in cultured aortic myocytes. Modeling the association of Et-1 to its receptor shows that, at concentrations which produce large increases in tension, Et-1 associates rapidly to its receptors and that a slow rate of association is not responsible for the slow rate of tension development. Action of endothelins on [Ca2+]i was studied using isolated cultured aortic myocytes and compared with that of angiotensin II and vasopressin. Results show that three vasoconstrictors produce similar and rapid changes in [Ca2+]i. The rate-limiting step for the contractile action of Et is a postreceptor event probably distal to early changes in [Ca2+]i. Biological responses to Et are usually characterized by a relative insensitivity to the peptide as compared with Kd values determined in binding experiments. Data presented show that insensitivity of the early [Ca2+]i responses to Et could be accounted for by the fact that the responses develop under nonequilibrium conditions. Tension amplitude seems also to be determined by non-equilibrium binding conditions. It correlates with the fraction of the Et-1 binding sites occupied 20 s after addition of the peptide and not to the fractional site occupancy at the time of maximum tension development.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call