Abstract

The rate constant for the reduction of the tyrosyl radical with selenocysteine has been measured to investigate whether selenocysteine is capable of repair of protein radicals. Tyrosyl radicals, both free in solution and in insulin, were generated by means of pulse radiolysis and laser flash photolysis in aqueous solution. The rate constant for the reaction of free N-acetyl-tyrosyl-amine radicals with selenocysteine is (8 +/- 2) x 10 (8) M (-1) s (-1), and that for tyrosyl radicals in insulin is (1.6 +/- 0.4) x 10 (8) M (-1) s (-1). The rate constant for the reaction of selenoglutathione with the N-acetyl-tyrosyl-amine radical is (5 +/- 2) x 10 (8) M (-1) s (-1). In contrast, cysteine and glutathione react more slowly than their selenium analogues with the tyrosyl radical: the reactions of N-acetyl-tyrosyl-amine radicals with cysteine and glutathione are 3 and 5 orders of magnitude slower, respectively, than those with selenocysteine and selenoglutathione, while those of tyrosyl radicals in insulin are 3 and 2 orders of magnitude slower, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.