Abstract

The kinetics of tryptophan influx were studied with rat brain slices preloaded with L-histidine and/or depleted of sodium ions. The best fits of the data (velocity of influx versus tryptophan concentration) were computed by use of a model consisting of a saturable (Michaelis-Menten type) and an unsaturable (diffusional) component with an iterative nonlinear regression analysis. Sodium depletion of the slices reduced the maximal velocity of saturable influx. In histidine-preloaded slices, depleted or not depleted of sodium ions, the most marked alteration again occurred in the maximal velocity, which more than doubled. Slices preloaded with histidine contained greatly elevated levels of glutamine and histidine, which may have stimulated the influx by exchange with extracellular tryptophan even in the absence of sodium ions. The maximal velocity was higher with increasing concentration of large neutral amino acids in slices at the start of the influx measurements. The influx of tryptophan in brain cells is apparently modified by changes in the intracellular amino acid pool, which, when increased, also counteracts the effect of sodium depletion on the tryptophan influx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.