Abstract

Partitioning among mobile and stationary water phases in a soil measurably reduces movement of a tracer relative to the mobile water phase. The quantity of water infiltrating the soil, however, still follows from the product of the distance travelled by the tracer and average moisture content of the soil over that distance. Partitioning between surface and water phases in a soil by proton and protium exchange has only a small effect on the retention of isotopically labelled water. Partitioning between surface, water and gas phases in a soil, however, strongly decreases diffusive movement of isotopically labelled water in the gas phase. In sandy soils with moisture contents less than 5%, the effective diffusion coefficient in the gas phase can be reduced by a factor between 50 and 5000. As a soil dries out, diffusive movement of 18O labelled water will become larger than of HDO and HTO.Negative charges on soil surfaces repel chloride and bromide. The effect of charge exclusion on movement of Cl− and Br− relative to HDO was measured in small columns for a number of soils from the southwest of Western Australia. Data from these experiments show that in the unsaturated zone of sandy soils, charge exclusion can reduce the pore volume available to Cl− and Br− in the water phase at field capacity by > 20%. Recharge to ground water, if calculated from the position of Cl− or Br− tracers and average moisture in the soil profile, must then be reduced by the same percentage.The effect of charge exclusion in soils on the calculation of recharge from profile data, was evaluated for a practical situation. Significant amounts of bromide from car exhaust gases accumulate in soils in urban areas and can be used to trace water movement. A site was chosen in metropolitan Perth on a sparsely vegetated calcareous sand near the junction of two busy roads. A seasonal effect on bromide accumulation in the soil profile at this site was clearly visible from data on the soil solution. The distribution of bromide in the soil profile appears to correspond to 93% of rainfall recharging ground water. Correcting the data for charge exclusion, results in a calculated recharge of ≈ 70% of annual rainfall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call