Abstract

We report the formation kinetics of trifluoromethane clathrate hydrate (CH) from less than 75 μm diameter ice particles and CHF3 gas. As previously observed for difluoromethane and propane hydrate formation, the initial stages of the reaction exhibit a strong negative correlation of the reaction rate with temperature, consistent with a negative activation energy of formation. The values obtained for trifluoromethane, ca. -6 kJ/mol (H2O), are similar to those for difluoromethane, even though the two molecules have different intermolecular interactions and sizes. The activation energy is lesser per mole of H2O, but greater per mole of guest molecule, than for propane hydrate, which has a different crystal structure. We propose a possible explanation for the negative activation barrier based on the stabilization of metastable structures at low temperature. A pronounced dependence of the formation kinetics on the gas flow rate into the cell is observed. At 253 K and a flow rate of 15 mmol/h, the stage II enclathration of trifluoromethane proceeds so quickly that the overpressure, the difference between the gas cell pressure and the hydrate vapor pressure, is only 0.06 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.