Abstract

AbstractThe Arrhenius parameters for the gas phase, unimolecular structural isomerizations of 1,1,2‐trimethylcyclopropane to three isomeric methylpentenes and two dimethylbutenes have been determined over a wide range of temperatures, 688–1124 K, using both static and shock tube reactors. For the overall loss of reactant, Ea = 63.7 (± 0.5) kcal/mol and log10 A = 15.28 (± 0.12). These values are higher by 2.6 kcal/mol and 0.7–0.8 than previously reported from experimental work or predicted from thermochemical calculations. Ea for the formation of trans‐4‐methyl‐2‐pentene is 1.5 kcal/mol higher than Ea for the formation of the cis isomer, which is identical to the Ea difference previously reported for the formation of trans‐ and cis‐2‐butene from methylcyclopropane. Substitution of methyl groups for hydrogen atoms on the cyclopropane ring is expected to weaken the CC ring bonds, and it has been reported previously that activation energies for structural isomerizations of methylcyclopropanes do decrease substantially over the series cyclopropane > methylcyclopropane > 1,1‐ or 1,2‐dimethylcyclopropane. However, the present study shows that the trend does not continue beyond dimethylcyclopropane isomerization. Besides reductions in CC bond energy, steric interactions may be increasingly important in determining the energy surface and conformational restrictions near the transition state in isomerizations of the more highly substituted methylcyclopropanes. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 475–482, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.