Abstract
A reactive extrusion-calendering process was used in order to manufacture sheets with a nominal thickness of 1 mm of poly(lactic acid) and its nanocomposite with 2.5% of an organo-modified montmorillonite. During processing, the properties of the melt were stabilized and enhanced by the addition of 0.5% of a styrene-acrylic multi-functional-epoxide oligomeric reactive agent. The general analytical equation has been used in order to evaluate the kinetic parameters of the thermal degradation of poly(lactic acid) obtained by reactive extrusion and its nanocomposite. Various empirical and theoretical solid-state mechanisms have been tested to elucidate the best kinetic model. In order to reach this goal, master plots have been constructed by means of standardized conversion functions. Given that it is not always easy to visualize the best accordance between experimental and theoretical values of standardized conversion functions, a new index has been developed to quantitatively discern the best mechanism. By doing that, it has been possible to determine the right activation energy of the thermal degradation. It has been demonstrated that the best theoretical mechanism was the random scission of macromolecular chains within the polymer matrix. This was also in accordance with an empirical kinetic model based on an autocatalytic kinetic model. The presence of montmorillonite nanoparticles has been beneficial and has enhanced the thermal stability of poly(lactic acid).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.