Abstract

The shear-induced isotropic-to-lamellar phase transition in the amphiphilic systems in the vicinity of the quiescent order-to-disorder transition point is investigated by the large-scale parallel nonequilibrium molecular dynamics simulations of simple amphiphilic model systems. There is a shear-induced upward shift of the ordering temperature. The initial isotropic phase orders into a lamellar phase perpendicular to the shear vorticity. The phase diagram as a function of temperature and shear rate is established. The dependency of the ordering transition on interaction strength and shear rate is rationalized by the competition between shear rate and chain relaxation. The time evolution of morphology reveals that the shear-induced ordering proceeds via nucleation and growth, a signature of a first-order phase transition. At low shear rate, a single ordered domain grows after an incubation period. With increasing shear rate ordering speeds up, but eventually develops in a lamellar system with disordered shear bands. The time dependence of the order parameter follows that of the mean-squared end-to-end distance, shear viscosity, and bulk pressure, and follows an Avrami scheme with an Avrami exponent between 2 and 4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call