Abstract

The salt-induced B- to Z-DNA conformational transition is a cooperative- and time-dependent process. From a modified form of the logistic equation which describes an equilibrium between two states we have deduced a kinetic function to quantify the degree of the B to Z transition of a synthetic (dG-dC) ⋅ (dG-dC) polynucleotide. This function was obtained by introduction of time as a variable in the logistic function so that the equilibrium constant, K, is replaced by a new constant Ks, characteristic of the type of salt used. This constant is defined as the salt concentration needed to reach the B-Z transition-midpoint in the time unit. The equation fits the data obtained by circular dichroism (CD) for changes in molecular ellipticity of poly(dG-m5dC) ⋅ poly(dG-m5dC) and poly(dG-dC) ⋅ poly(dG-dC) incubated with various concentrations of mono-, di-, and trivalent salts at a constant temperature. The derived expression may be a very useful tool for studying the kinetics of the B- to Z-DNA transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.