Abstract
The dead biomass of the brown seaweed, Ecklonia sp., is capable of reducing toxic Cr(VI) into less toxic or nontoxic Cr(III). However, little is known about the mechanism of Cr(VI) reduction by the biomass. The objective of this work was to develop a kinetic model for Cr(VI) biosorption, for supporting our mechanism. The reduction rate of Cr(VI) increased with increasing total chromate concentration, [Cr(VI)], and equivalent concentration of organic compounds, [OCs], and decreasing solution pH. It was found that the reduction rate of Cr(VI) was proportional to [Cr(VI)] and [OCs], suggesting the simple kinetic equation −d[Cr(VI)]/d t = k[Cr(VI)][OCs]. When considering the consumption of organic compounds due to the oxidation by Cr(VI), an average rate coefficient of 9.33 (±0.65) μM −1 h −1 was determined, at pH 2. Although the function of the pH could not be expressed in a mechanistic manner, an empirical model able to describe the pH dependence was obtained. It is expected that the developed rate equation could likely be used for design and performance predictions of biosorption processes for treating chromate wastewaters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.