Abstract

The concerted dissociative reduction of di-tert-butyl peroxide (DTBP), dicumyl peroxide (DCP), and di-n-butyl peroxide (DNBP) is evaluated by both heterogeneous and homogeneous electron transfer using electrochemical methods. Electrochemical and thermochemical determination of the O−O bond energies and the standard potentials of the alkoxyl radicals allow the standard potentials for dissociative reduction of the three peroxides in N,N-dimethylformamide and acetonitrile to be evaluated. These values allowed the kinetics of homogeneous ET reduction of DTBP and DCP by a variety of radical anion donors to be evaluated as a function of overall driving force. Comparison of the heterogeneous ET kinetics of DTBP and DNBP as a function of driving force for ET allowed the distance dependence on the reduction kinetics of the former to be estimated. Results indicate that the kinetics of ET to DTBP is some 0.8 order of magnitude slower in reactivity than DNBP because of a steric effect imposed by the bulky tert-butyl ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call