Abstract

Furan and alkylfurans are present in the atmosphere from direct emissions and in situ formation from other volatile organic compounds. The OH radical-initiated reactions of furan and alkylfurans have been proposed as relatively clean in situ sources of unsaturated 1,4-dicarbonyls, some of which are otherwise not readily available. Using a relative rate method, rate constants at 296 ± 2 K for the gas-phase reactions of OH radicals with 2- and 3-methylfuran, 2,3- and 2,5-dimethylfuran, and Z- and E-3-hexene-2,5-dione have been measured, of (in units of 10(-11) cm(3) molecule(-1) s(-1)): 2-methylfuran, 7.31 ± 0.35; 3-methylfuran, 8.73 ± 0.18; 2,3-dimethylfuran, 12.6 ± 0.4; 2,5-dimethylfuran, 12.5 ± 0.4; Z-3-hexene-2,5-dione, 5.90 ± 0.57; and E-3-hexene-2,5-dione, 4.14 ± 0.02. Products of the OH radical-initiated reaction of 2,5-dimethylfuran were investigated, with 3-hexene-2,5-dione being formed with molar yields of 24 ± 3% in the presence of NO and 34 ± 3% in the absence of NO. Direct air sampling atmospheric pressure ionization mass spectrometry showed the formation of additional products of molecular weight 114, attributed to CH(3)C(O)CH ═ CHC(O)OH and/or 5-hydroxy-5-methyl-2-furanone, and 128, attributed to CH(3)C(O)OC(CH(3)) = CHCHO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.