Abstract
Abstract Highly unsaturated hydrocarbons like diacetylene (C4H2) or vinylacetylene (C4H4) are important intermediates in combustion that can have impact on soot formation. One of their major loss channels is reaction with hydroxyl radicals (OH). We studied the reactions C4H2 + OH → products (1) and C4H4 + OH → products (2) in a quasi-static reactor with helium as bath gas. The hydroxyl radicals were produced by laser flash-photolysis of nitric acid at a wavelength of 248 nm and detected by laser-induced fluorescence with excitation at 282 nm. The rate coefficients were obtained from the intensity-time profiles under pseudo-first order conditions with respect to OH. We found a virtually temperature-independent rate coefficient for reaction (1): k 1 = (1.0 ± 0.3) × 10−11 cm3 s –1 (T = 290–670 K, P = 2.7–30.5 bar) and a weakly negative temperature-dependent rate coefficient for reaction (2): k 2(T) = (6.4 ± 1.9) × 10−12 exp (486 K/T) cm3 s –1 (T = 295–740 K, P = 1.7–19.2 bar). For neither of the two reactions pressure dependence was observed. From comparisons with analogous reaction systems, we conclude that the dominating reaction pathway is OH addition, where in the case of C4H4 the double bond is preferred over the triple bond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.