Abstract

The kinetics of the methanolysis of benzenesulphonyl chloride in the presence of pyridine and its methyl derivatives, and of some para-substituted benzenesulphonyl chlorides in the presence of pyridine, have been studied. The reaction as studied shows first-order kinetics, but is of the first order in sulphonyl chloride and in pyridine or alkylpyridine. From the kinetics, solvent isotope effect, and the low reactivity of 2-picoline compared with the other alkylpyridines, it is concluded that the pyridines function as nucleophilic catalysts. Structural variations in the pyridine and sulphonyl chloride follow the Bronsted and Hammett equations respectively. Comparison of the present data with those for the corresponding hydrolysis show that the reaction of pyridines with benzenesulphonyl chloride is slower in methanol than in water because of a more negative entropy of activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.