Abstract

Rate constants for the reaction between excited singlet state aromatic donors and the dialkyl peroxide, di-tert-butyl peroxide (DTBP), and the bicyclic endoperoxide, ascaridole (ASC), were measured in acetonitrile using fluorescence quenching techniques. The rate constants, measured with 18 different aromatic donors by Stern-Volmer quenching, range from 9.2  109 to 4.4  106 M-1 s-1. Using accurately measured standard reduction potentials for the peroxides, the driving force for photoinduced electron transfer is predicted to be thermodynamically feasible over the entire range of excited donors ranging from 49 to 10 kcal mol-1 for ASC and 38 to 2 kcal mol-1 for DTBP. However, when the photoinduced kinetics are combined with previously measured electron transfer kinetics by homogeneous redox catalysis with ground state radical-anion donors, a smooth parabolic correlation for a dissociative electron transfer mechanism is not observed. Rather, a discontinuity is observed between the photochemical and electrochemical data sets with the rate constants with singlet excited states donors being over two orders of magnitude larger than the ground state kinetics at the same driving force. The discrepancy is examined considering the importance of attractive interaction between fragments in the dissociative photoinduced electron transfer reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.