Abstract

Kinetic studies on the action of monoamine oxidase (MAO) in the regulation of Na+,K+-ATPase were performed using 3-methoxy-4-hydroxybenzaldehyde (MHB), which is an analogue of 3-methoxy-4-hydroxy-phenylacetylaldehyde (product of MAO-catalysed reaction with dopamine as substrate). It was observed that at 2.6 microM MHB, the activation of Na+,K+-ATPase may be the result of the removal of the inhibitory Ca2+, thereby increasing the Vmax. Double-reciprocal plots of Pi versus MHB showed that Ca2+ counteracted the effect of the aldehyde not by changing the Km, but be decreasing the Vmax of the Na+,K+-ATPase stimulation. The removal of 3',5'-cyclic AMP-dependent protein kinase from the microsomes by sodium dodecyl sulphate treatment abolished the activation and/or inhibition of the Na+,K+-ATPase by aldehyde; it can therefore be inferred that 3',5'-cyclic AMP-dependent protein kinase is involved in the regulation of Na+,K+-ATPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.