Abstract
Summary The effect of nickel nanoparticles on in-situ upgrading of heavy oil (HO) during aquathermolysis and the effect of this process on the recovery through cyclic steam injection were studied. High-temperature experiments were conducted with a benchtop reactor to study the kinetics of the reactions among oil, water, and sandstones in the presence and absence of the nickel nanoparticles. Eighteen experiments were conducted at three different temperatures and at three different lengths of time, and the evolved hydrogen sulfide during the reaction was analyzed. The kinetic analysis showed that nickel nanoparticles reduce the activation energy of the reactions corresponding to the generation of hydrogen sulfide by approximately 50%. This reaction was the breakage of C-S bonds in the organosulfur compounds of the HO. The maximal catalysis effect was observed to be at a temperature of approximately 270°C. Also, the simulated-distillation gas-chromatography (GC) analysis of the oil sample, after the aquathermolysis reactions, confirmed the catalysis effect of nickel nanoparticles. According to this analysis, by catalytic process, the concentration of the components lighter than C30 increased whereas the concentration of heavier components decreased. Next, the effect of the catalytic aquathermolysis on the recovery factor of the steam-stimulation technique was studied. The stimulation experiments consisted of three injection/soaking/production phases. The results showed that the nickel nanoparticles increased the recovery factor by approximately 22% when the nanoparticles were injected with a cationic surfactant and xanthan-gum polymer. This increase of recovery was approximately 7% more than that of the experiment conducted with the surfactant and polymer only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.