Abstract

Kinetics of the reactions of butylmagnesium chloride and phenylmagnesium bromide with tetraethoxysilane and methyltrichlorosilane was investigated in diethyl ether and diethyl ether-toluene mixtures. Replacement of ether by toluene significantly accelerates the reaction with alkoxysilanes, while no effect was found for the reaction with chlorosilanes. We established that the reaction with alkoxysilanes consists of replacement of a donor molecule at the magnesium center by the silane followed by subsequent rearrangement of the complex to products through a four-center transition state. Chlorosilanes react differently without solvent molecule replacement but also via a four-center transition state. Large negative activation entropies are consistent with formation of cyclic transition states. Small activation enthalpy values together with remarkable exothermicity point to early transition states of the reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.