Abstract
Abstract Functional oligoperoxide surfactants and coordinating oligoperoxide metal complexes were studied as modifiers of glass flat plates to provide the localization of radical forming sites and other functional fragments in adsorbed polymeric layers of a nanoscale thickness. Both the kinetics of the coating formation and properties of the nanolayers witness the dependence of the packing density of oligoperoxide molecules in the coatings on the oligoperoxide natures, concentrations and conditions of the sorption modification. The availability of definite amount of peroxide groups in formed nanolayer provides the possibility of controlled radical graft polymerization initiated from modified surface leading to reliable surface protection, functionality and targeted surface hydrophilic-hydrophobic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.