Abstract

The kinetics of inhibitor binding to highly purified recombinant human dihydrofolate reductase (rHDHFR) have been examined. Methotrexate (MTX) binds rapidly (kon = 1.0 x 10(8) M-1 s-1) and tightly (koff/kon = 210 pM) to the preformed complex of rHDHFR with NADPH. The initial association reaction between rHDHFR.NADPH and MTX is followed by an isomerization of the resulting complex (kiso = 0.4 s-1) leading to a new conformer in which MTX is bound even more tightly (Ki = 3.4 pM). Similar results have been obtained with a major metabolite of MTX having four additional glutamate residues for which Ki = 1.4 pM. 7-HydroxyMTX, another major metabolite of MTX, is a weak inhibitor of rHDHFR (Ki = 8.9 nM), and a polyglutamate form of this metabolite is an equally weak inhibitor (Ki = 9.9 nM), so that the addition of glutamate residues to MTX or 7-hydroxyMTX has little effect on their binding. It follows that the significance of MTX polyglutamate formation relates to other roles such as increasing the cytotoxicity of MTX by prolonging intracellular retention of the drug. Another antifolate, trimethoprim, binds tightly to dihydrofolate reductases from bacterial sources, but weakly to rHDHFR in the ternary complex (KD = 0.5 microM). Although the association step is rapid (kon = 0.4 x 10(8) M-1 s-1), the dissociation rate is also rapid (koff = 15 s-1). Furthermore, there is no isomerization of the ternary complex of trimethoprim with rHDHFR, in contrast to the known isomerization of complexes of trimethoprim with bacterial dihydrofolate reductases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.