Abstract

Aqueous alkaline hydrolysis of bulk quantities and wastewater contaminated with high explosives is a promising technology for treatment and disposal of the worldwide surplus of munitions. We investigated the hydrolysis kinetics of the high explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) for temperatures ranging from 50 to 80 °C and in the pH range from 10 to 12. The experimental data were described using a pseudo-first-order model with subsequent calculation of second-order rate constants from experiments with excess hydroxide concentration. The temperature dependency of the rate constants was evaluated using the Arrhenius model. The activation energies were determined to be ERDX = 99.9 ± 1.9 kJ mol-1 and EHMX = 111.9 ± 0.8 kJ mol-1. The rate of HMX hydrolysis is much slower than the rate of RDX hydrolysis and may become rate limiting in the treatment of RDX/HMX mixtures. The alkaline hydrolysis of RDX yields 1.6 M NO2-, 1.5 M HCOO-, 0.1 M CH3COO-, 1.1 M HCHO (11), 0.9 M NH3, 1.1 M N2O, and 0.34 M N2 per mol of RDX hydrolyzed. Acetate ion (CH3COO-) is a previously unknown end product of the alkaline hydrolysis of RDX. A mass balance showed a recovery of 94% carbon and 90% nitrogen. During GC/MS analysis of the end products, no further unknown products could be found. In batch desorption studies, it was also shown that RDX-laden activated carbon can be regenerated using alkaline hydrolysis (T = 80 °C, pH 12) and that the desorption of the hydrolysis products is complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.