Abstract

The temporal changes in circular dichroism at 222 and 260 nm were recorded by using stopped-flow spectroscopy after mixing α-chymotrypsin solutions with sodium dodecyl sulfate solutions. Simultaneously with the circular dichroism signal, the fluorescence emission was recorded. Changes in the secondary and tertiary structures of chymotrypsin induced by sodium dodecyl sulfate are characterized by either three or four one-way reactions with relaxation amplitudes and times precisely determined by an advanced numerical procedure of Kuzmič. Quantitatively, transitions within the secondary and tertiary structures of the protein are significantly different. Moreover, changes in the tertiary structure depend on the type of recorded signal (either circular dichroism or fluorescence) and the wavelength of the incident radiation. The latter observation is particularly interesting as it indicates that the contributions of protein's different tryptophans to the total recorded fluorescence depend on the excitation wavelength. We present several results justifying this hypothesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.