Abstract

Abstract. The results of experimental studies are presented, the purpose of which was to study the influence of variable formulation and technological factors on the rheological characteristics of the foam concrete mixture, in particular, the structural strength. This is preceded by an analysis of the process of structure formation of cellular concrete. As a result, it is shown that the properties of cellular concrete are determined by the nature of the distribution of the solid component. The structure of the solid phase is formed at the earliest stages of the formation of cellular products and depends on the rheological characteristics of the mortar and cellular mixture. In the technology of cellular concrete, it is important to synchronize the processes of pore formation and the growth of plastic (structural) strength, which is also associated with a change in the rheological properties of the mixture. Using the methods of mathematical statistics, the influence of the content of the filler in the mixture with cement, the content of the complex additive, and the effect of mechanical chemical activation on the kinetics of the plastic strength of the foam concrete mixture were studied. The kinetic dependences of the plastic strength of the foam concrete mixture in the range of 6 ... 24 hours from the moment of manufacture have been constructed. Each of the 15 curves is maximized by a 3rd-degree polynomial. Based on the obtained dependences, they are differentiated between the first and second derivatives. As a result, the equations of the speed and intensity (acceleration) of the plastic strength of the foam concrete mixture were obtained. According to the results of the previous experiment, carried out according to a three-factor plan, a 4-factor plan was synthesized, in which the aging period of the foam concrete mixture was taken as the fourth factor. The calculated theoretical values of the characteristics of the structural strength of the foam concrete mixture were entered into the matrix. As a result, mathematical models of plastic strength, speed, and intensity of plastic strength of the foam concrete mixture were calculated and the influence of variable factors studied on the isosurfaces of these properties was visualized. The analysis of these dependencies made it possible to determine the characteristic recipe and technological conditions for obtaining a foam concrete mixture with the required values of plastic strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.