Abstract

The kinetics of the reductive stripping of plutonium(IV) by dihydroxyurea (DHU) in 30% TBP/kerosene-HNO3 system was studied with a constant interfacial area cell. The stripping rate of plutonium(IV) increases with the increase of the stirring speed of two phases and the interfacial area. The activation energy of this process is 28.4 kJ/mol. Under the given experimental conditions, the mass transfer of Pu is not controlled by redox reaction, but controlled by molecular diffusion from the organic phase to organic film layer and from the aqueous film layer to aqueous phase. The rate equation of reductive stripping (process is controlled by diffusion) was obtained as: r 0 = k′[Pu(IV)]0[DHU]a 0.16[HNO3]a −0.34. The rate constant k′ is (5.0±0.4)·10−2 (mol/L)0.18·min−1 at 18.0°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call