Abstract

The rates of reduction of ferric iron in Fe2O3-CaO-SiO2-Al2O3 slags containing 3 to 21 wt pct Fe2O3 under impinging argon, CO-CO2, or H2-H2O have been studied at 1370 °C under conditions of enhanced mass transfer in the slag using a rotating alumina disc just in contact with the slag surface. For a 6 wt pct Fe slag at a stirring speed of 900 rpm the observed reduction rates by 50 pct H2-H2O were a factor of 2 to 3 times higher than those by 50 pct CO-CO2 and more than one order of magnitude higher than those under pure argon. The observed rates were analyzed to determine the rate-controlling mechanisms for the present conditions. Analysis of the rate data suggests that the rates under 50 pct H2-H2O are predominantly controlled by the slag mass transfer. The derived values of the mass-transfer coefficient followed a square-root dependence on the stirring speed for a given slag and, at a given stirring speed, a linear function of the total iron content of the slags. The rates of oxygen evolution during reduction under pure argon were shown to be consistent with a rate-controlling mechanism involving a fast chemical reaction at the interface and relatively slow mass transfer in the gaseous and the slag phases. The rates of reduction by CO-CO2 (pCO=0.02 to 0.82 atm) were found to be likely of a mixed control by the slag mass transfer and the interfacial reaction. A significant contribution of oxygen evolution to the overall rates was observed for more-oxidized slags and for experiments with relatively low values of pCO. Assuming a parallel reaction mechanism, the estimated net reduction rates due to CO were found to be of the first order in pCO, with the first-order rate constants being approximately a linear function of the ferric concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call