Abstract

Saturated random sequential adsorption packings built of two-dimensional ellipses, spherocylinders, rectangles, and dimers placed on a one-dimensional line are studied to check analytical prediction concerning packing growth kinetics [A. Baule, Phys. Rev. Lett. 119, 028003 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.028003]. The results show that the kinetics is governed by the power law with the exponent d=1.5 and 2.0 for packings built of ellipses and rectangles, respectively, which is consistent with analytical predictions. However, for spherocylinders and dimers of moderate width-to-height ratio, a transition between these two values is observed. We argue that this transition is a finite-size effect that arises for spherocylinders due to the properties of the contact function. In general, it appears that the kinetics of packing growth can depend on packing size even for very large packings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.