Abstract
The solid solution treated aluminium alloy AA 6110 was investigated using a differential scanning calorimetry (DSC) with different heating rates. Kinetic parameters, e.g. the activation energy and the Avrami exponent, were calculated. The peak temperatures of the hardening phase β″ from each heating rate were collected to calculate the activation energy of the aluminium alloy AA 6110 using various mathematical models: the Kissinger, Ozawa and Boswell models. It was found that the activation energies from each model were within the range of 106–114 kJ mol−1. These activation energies were found to be lesser than those for the bulk diffusion of aluminium, magnesium and silicon atoms in aluminium matrix. The average Avrami exponent, n of 2·36 was calculated using the developed Matusita model and corresponded to a one-dimensional linear growth of fresh nuclei of needle-like β″ in this aluminium alloy AA 6110.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.