Abstract

Two types of stress relaxation tests were carried out to investigate the incubation time for incipient precipitation of Ti(C,N) in deformed austenite and (Ti, Mo)C in ferrite of ferritic Ti-Mo microalloyed steel. The size distribution, amount and chemical composition of precipitates were obtained by using physicochemical phase analysis, and calculated according to thermodynamics and kinetics. The experimental results demonstrated that the incubation time was reduced with increasing Ti content, and prolonged with the addition of Mo. After 30% deformation at 850 °C, the nucleation of strain-induced Ti(C,N) was a relatively slow process. On the other hand, the temperature where the nucleation rate of (Ti, Mo)C in ferrite was the highest descended first and then ascended with increasing Ti content, and so did the temperature where the incubation time was the shortest. The key point is that the temperature of steel containing about 0. 09% Ti is the lowest. The mass fraction of MC-type particles with size smaller than 10 nm in steel containing 0. 09% Ti and 0. 2% Mo reached 73. 7%. The size distributions of precipitates in steel containing 0. 09% Ti were relatively concentrated compared with that in steel containing 0. 07% Ti.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.