Abstract

The isothermal crystallization near the glass transition temperature from the melt state of poly(trimethylene terephthalate) has been studied by wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), and optical microscopy. The SAXS and WAXD results show the crystallization mechanism in which the crystalline nodules cover the entire sample with the formation of aggregation regions. The analysis of the SAXS results using Kolmogorov-Johnson-Mehl-Avrami theory indicates that the formation kinetics of the aggregation regions is of three-dimensional homogeneous nucleation type. The analysis of the SAXS profiles using Sekimoto's theory provides the growth velocity and the nucleation rate of the aggregation region. The temperature dependence of the growth velocity of the aggregation region is a natural extrapolation of that of spherulite to the high supercooling region. The temperature dependence of the nucleation rate of the aggregation region is also represented by the parameters of the spherulitic growth rate. The result of the growth velocities of the aggregation region and the spherulite suggests the existence of precursors at the front of the crystal growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.