Abstract

The kinetics of the adsorption of a cationic polymer flocculant onto negatively charged polystyrene latex (PSL) particles were measured by means of electrophoresis as a function of the molecular weight of the polyelectrolyte and the ionic strength of the solution. In the experiment, the dispersion of bare PSL particles was mixed with a polyelectrolyte solution by means of end-over-end rotation in which the mixing intensity was evaluated in terms of the collision frequency between the colloidal particles. The rate of electrophoretic mobility of a PSL particle, which remained as a singlet, was measured against the mixing steps, which was equivalent to the time elapsed after the onset of flocculation. The shape of the kinetic curves is typical: a linear increase for a short period followed by a plateau, implying the saturation of the colloidal surface by the adsorbed polyelectrolyte. In the case of low ionic strength, the plateau value was dependent on the molecular weight of the polyelectrolyte. That is, a lower plateau value was detected when the molecular weight of the polyelectrolyte was smaller and its concentration was lower. However, the amount of adsorption was kinetically controlled only for the case of higher molecular weight. In the case of high ionic strength, the plateau value of electrophoresis was constant, regardless of the polyelectrolyte concentration and molecular weight. These data will ultimately be useful in further analysis of the flocculation behavior of colloidal particles with a polyelectrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call