Abstract
The unicellular rhodophyte Rhodella violacea can adapt to a wide range of irradiances. To create a light stress, cells acclimated to low light were transferred to higher irradiance and the kinetics of various changes produced by the light shift were analyzed. The proton gradient generated by excess light led to a non-photochemical quenching of the chlorophyll fluorescence and some photoinhibition of photosystem II centers was also produced by the light stress. After the shift to higher irradiance, the mRNA levels of three chloroplast genes that encode phycoerythrin and phycocyanin apoproteins and heme oxygenase (the first enzyme specific to the bilin synthesis) were negatively regulated. A change in the amount of thylakoids and in the total pigment content of the cells occurred during light acclimation after a light stress. The change in the size of the phycobilisome was limited to dissapearance of the terminal phycoerythrin hexamers in some of the rods. The ability of R. violacea to photoacclimate depends both on large changes in thylakoid number and pigment content and on smaller changes in the antenna size of photosystem II.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.