Abstract

Experiments using flumes containing mixed grain-size sediment with an associated algal biofilm, from two sites on the R. Tame, investigated the sediment–water exchanges in heterogeneous sediment deposits. These results were considered in the light of findings of a companion study [Gainswin BE, et al. The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release. Sci Total Environ, this issue.] by considering this natural system in relation to the effects of the different sizes of material comprising the sediment. Sediment samples were collected in trays installed in the river over a period of one growth cycle (March 2001–April 2002) and placed in flume channels with controlled water flow. The temperature, pH, and dissolved oxygen of the solution overlying the sediment were monitored automatically whilst filtered samples were obtained at 2-0h intervals over 48 h. The biomass, expressed as chlorophyll a, of the algal component of the biofilm from the surface of the sediment was estimated using methanol extraction. The composition of the sediment, viz. size fractions, organic matter and porosity, were determined at the end of the experiments. The equilibrium phosphate concentration and a phosphorus transfer index were used to establish that a net uptake of phosphorus by some of the samples that occurred at the time of sampling. The results were modelled using a Diffusion Boundary Layer model and the maximum flux from the sediment (or limiting diffusion flux) compared for each of the samples. The limiting diffusion flux was highest at the most contaminated site—reaching ∼ 180 nmol m − 2 s − 1 (normalised with respect to the river bed area). The limiting diffusion flux calculated for the composite samples was in agreement with the flux estimated from the contributions expected from the individual size fractions [Gainswin BE, et al. The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release. Sci Total Environ, this issue.]. The dominance of the flux contribution from the stones size fraction (> 20 mm) confirms that sediment having a filamentous biofilm and associated particulate material results in a greater flux than a silt sediment without such a biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.