Abstract

The in vitro stability and metabolism of GEM[91, a 25mer phosphorothioate antisense oligonucleotide complementary to the gag mRNA region of HIV-1, was investigated using capillary electrophoresis (CE). The in vitro degradation of the parent compound at 37 degrees C was followed over the course of 120 h in human plasma. A CE method using laser-induced fluorescence detection was able to detect 5'-end intact metabolites including the parent compound extracted from biological fluids. Because the primary metabolic pathway is believed to be via 3'-exonuclease activity, the results of this study were compared with the stability of the compound in a solution containing 3'-exonuclease. The numerical solution of sequential first-order reactions was used to obtain kinetic parameters. Exonuclease digestion of the parent compound, as measured using an automated CE-UV instrument, yielded striking similarities between the two in vitro systems as well as between in vitro and in vivo systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.