Abstract
Fusion between membranes of 3T3 fibroblasts expressing hemagglutinin (HA) from the Japan strain of influenza virus and human red blood cells (RBC) was measured using an assay for lipid mixing based on the relief of self-quenching (dequenching) of fluorescence of the lipid probe octadecylrhodamine (R18). The probe was incorporated into the membrane of intact RBC at self-quenching concentrations, and the RBCs were bound to the 3T3 cells. Fusion, which allowed movement of R18 into 3T3 cell membranes, was monitored by spectrofluorometry as an increase in fluorescence. Upon lowering the pH below 5.4, the fluorescence increased after a delay of about 30 s at 37 °C, and leveled off within 2 min. In control experiments where R18 RBCs bound to 3T3 cells expressing the uncleaved precursor hemagglutinin (HA0) were incubated at 37 °C and low pH, no fluorescence increase was observed. This indicated that the R18 dequenching occurred as a result of HA-induced fusion of plasma membranes. Fusion showed a very steep pH dependence with a threshold at pH 5.4 and a maximum at pH 5.0, similar to HA-induced fusion seen previously using cell biological techniques. The fusion rate increased and the delay for the onset of fusion decreased as the temperature was raised above 20 °C. Low pH activation of the fusion process at 37 °C could be partially arrested by raising the pH after 2–10 s, but not after 15 s, indicating that the irreversible pH-activated conformational change of HA necessary for fusion was complete within about 15 s. Analysis of the data indicates that the pH-induced membrane fusion activity of HA is a highly cooperative event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.