Abstract

The kinetics of oxygen incorporation are of fundamental importance for an application of acceptor doped strontium titanate as a resistive-type oxygen sensor. The electrical conductance of the sample depends on the ambient oxygen partial pressure pO2 due to oxygen exchange between gas phase and solid state which leads to a flow of charge carriers. The kinetics of the incorporation process can be separated into two steps: the oxygen surface transfer and the subsequent bulk diffusion of oxygen vacancies. The rate of the slower step determines the kinetics of the overall incorporation process and thus the sensor’s response behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.