Abstract

Myeloperoxidase (MPO), which is involved in host defence and inflammation, is a unique peroxidase in having a globin-like standard reduction potential of the ferric/ferrous couple. Intravacuolar and exogenous MPO released from stimulated neutrophils has been shown to exist in the oxyferrous form, called compound III. To investigate the reactivity of ferrous MPO with molecular oxygen, a stopped-flow kinetic analysis was performed. In the absence of dioxygen, ferrous MPO decays to ferric MPO (0.04 s −1 at pH 8 versus 1.4 s −1 at pH 5). At pH 7.0 and 25 °C, compound III formation (i.e., binding of dioxygen to ferrous MPO) occurs with a rate constant of (1.1 ± 0.1) × 10 4 M −1 s −1. The rate doubles at pH 5.0 and oxygen binding is reversible. At pH 7.0, the dissociation equilibrium constant of the oxyferrous form is (173 ± 12) μM. The rate constant of dioxygen dissociation from compound III is much higher than conversion of compound III to ferric MPO (which is not affected by the oxygen concentration). This allows an efficient transition of compound III to redox intermediates which actually participate in the peroxidase or halogenation cycle of MPO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.