Abstract

An experiment for the oxidation process of single magnetite pellet and theoretical analysis based on modified unreacted core shrinking (MUCS) model were carried out, and the controlling mechanisms of the initial and developing reactions were examined, respectively. From the study of the initial reaction, it was found that the chemical reaction of surface is the controlling step of the overall reaction when the temperature is up to about 750 K, while the mass transfer through the gaseous boundary layer dominates the reaction rate when the temperature is above 750 K. As the reaction developing within the pellet, the mass transfer through the produced layer becomes the controlling step. In addition, the effects of reaction conditions (such as oxygen concentration, temperature) on the fractional oxidation of magnetite pellet were determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.