Abstract

Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner. From these data, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 6 ± 1 × 107 M−1 s−1 at pH 10. Tyrosine phenoxyl radicals were also monitored directly by kinetic spectrophotometry following generation of tert-butoxyl radicals by pulse radiolysis of solutions containing tyrosine. From the yield of tyrosyl radicals (measured before they decayed) as a function of tyrosine concentration, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 7 ± 3 × 107 M−1 s−1 at pH 10 (the reaction was not observable at pH 7). We conclude that reaction involves oxidation of tyrosine phenolate rather than undissociated phenol; since the pKa of phenolic hydroxyl dissociation in tyrosine is ∼ 10.3, this infers a much lower rate constant, about 3 × 105 M−1 s−1, for the reaction between this alkoxyl radical and tyrosine at pH 7.4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call