Abstract

Kinetics of ethanol–alkali delignification of fibre crop Arundo donax L. (giant reed) has been studied. The improved approach for determination of the reaction rate constants by accurate quantification of lignin fractions with different reactivity during standard procedure of graphical differentiation was applied. Following to a simplified model, the delignification process was considered as a complex of n-parallel irreversible first-order reactions with similar final product and analysed as a multi-component reaction system. Three kinetically distinguishable lignin fractions of A. donax were revealed and quantified in proportion of approximately 61, 23 and 16% (as initial, bulk and residual lignin, respectively) and their effective degradation rate constants were determined for different pulping conditions. The proportion of lignin fractions was different from that reported for wood, but close to another crop—wheat straw, where the initial lignin fraction was also found as a major fraction (about 90%). The values of apparent activation energy were estimated respectively as 64, 89 and 96 kJ mol −1, and were generally within the range of those reported for wood kraft and organosolv pulping. The simulation of ethanol–alkali delignification using found kinetic parameters showed the high reproducibility of experimental data on lignin removal, providing thereby the adequate test on validation of the suggested kinetic approach. The data reproducibility was substantially higher in comparison with conventional consecutive kinetic model (sum of square residuals (SQR) 0.0036 versus 0.0856).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call