Abstract

We have studied the kinetics of pore formation in giant unilamellar vesicles (GUV) with the antimicrobial peptide nisin. The role of charged lipid composition in the rate of pore formation by nisin in the vesicle membrane is investigated using fluorescence microscopy. We propose a model and obtain an analytical expression for the variation in the fluorescence intensity of a GUV as a function of time. We find that the analytical equation fits well to the experimental data, and the membrane surface potential can be estimated from the fit parameters. We further show that the formation of multiple pores on the vesicle membrane is affected by the charged lipid composition of the membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call