Abstract

Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent Km, Vmax, and catalytic efficiency (Vmax/Km) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar Km and Vmax appeared to metabolize naphthalene. The rank order of Vmax (rat olfactory epithelium>mouse olfactory epithelium>murine airways≫rat airways) correlated well with tissue susceptibility to naphthalene. The Vmax in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call