Abstract

The aim of this study is to shed more light on the formation of mullite and the kinetics of mullitization from sol-gel synthesized precursors. Tetraethylorthosilicate (TEOS) and aluminum nitrate nonahydrate (ANN) were used, as a source of silica and alumina, respectively, for the synthesis of homogenous mullite precursor powder. The mullitization process was characterized by thermogravimetry (TG), differential thermal analysis (DTA), thermodilatometric analysis (TDA), and x-ray powder diffraction (XRD) techniques. It was found that mullite started to crystalize at temperatures of 1050, 1200, and 1241 °C as determined by XRD, DTA, and TDA, respectively‏. Mullite crystallization kinetics was thoroughly investigated under isothermal and non-isothermal conditions using DTA. The activation energy for mullite formation was calculated, for different crystallization fractions, following the Freidman, Kissinger, Boswell, and Ozawa methods. The average values were found to be 1282.92, 1324.30, 1336.93, and 1283.09 kJ/mol, respectively. The kinetic parameters and the crystallization mechanism were determined and the results were compared with those available in the literature. The Sestak Berggren SB(m,n) model was found to be the most suitable for the determination of mullite crystallization mechanism. The calculated average values of the Gibbs free energy (ΔG#), enthalpy (ΔH#), and entropy (ΔS#) for mullite formation, at different heating rates, were 433.98 kJ/mol, 1294.20 kJ/mol, and 566.23 J/mol.K, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call