Abstract

<h2>Summary</h2> The high-temperature (high-T) phase of cesium lead iodide (CsPbI<sub>3</sub>) presents great promise for photovoltaic applications; however, exposure to ambient moisture at room temperature transforms it into its less-desirable low-temperature (low-T) phase with a larger band gap. While there have been theoretical predictions on the influence of moisture level on the phase transformation kinetics, the corresponding quantitative experimental evidence has remained limited. Tracking CsPbI<sub>3</sub> phase transformation under controlled relative humidity (RH), we find that rising RH increases the nucleation rate of low-T CsPbI<sub>3</sub> exponentially, but has a weak effect on its growth. The overall transformation is nucleation limited, with higher RH leading to a lower nucleation barrier. Finally, we find that heating between 40°C and 80°C facilitates water desorption and suppresses phase transformation. Our findings elucidate the relationship between moisture and the phase energetics of CsPbI<sub>3</sub>, which can serve as references for thin film applications of CsPbI<sub>3</sub> and future designs of stable photovoltaics systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.