Abstract
This study was designed to systemically investigate the kinetics of extracellular signal-regulated kinase (ERK) 1/2, p54 c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated Kupffer cells (KC) simultaneously at the levels of protein expression, phosphorylation, and kinase activity, respectively, and their role in mediating pro- and anti-inflammatory cytokines. The protein expression, phosphorylation, and activities of these MAPKs in LPS-stimulated primary mouse KCs were determined with SDS-PAGE and western blotting using nonphosphorylated or phosphospecific antibodies or their corresponding substrates. The levels of TNF-alpha and IL-10 in culture supernatants were measured with ELISA kits. The results revealed that LPS stimulation, although not up- or downregulating the protein expression of ERK1/2, p54JNK, and p38 MAPKs in KCs, could induce rapid and significant activation of these kinases, with parallel profiles of changes in both phosphorylation and kinase activities. Although ERK1/2, p54JNK, and p38 kinases in LPS-stimulated KCs have similar kinetics of activation, the activation of ERK1/2 and p38 kinases was the most prominent. Inhibition of p38 MAPK with SB203580 inhibited the production of TNF-alpha and IL-10 by LPS-stimulated KCs, whereas blockade of ERK1/2 with PD98059 could reduce TNF-alpha production, but did not affect IL-10 production. Furthermore, PD98059 and SB203580 had an additive effect on TNF-alpha production, but PD98059 did not augment the SB203580-induced inhibition of IL-10 production. These data indicate that LPS stimulation, although not inducing any change in protein expression, results in rapid activation of ERK1/2, p54JNK, and p38 kinases in KCs, and that they may have different importance in the regulation of pro- and anti-inflammatory responses by LPS-stimulated KCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.