Abstract

Methane hydrate is being considered as a potential future energy source but may at the same time constitute a considerable geo-hazard. In the present study, methane hydrate bearing sand sediment was created by pressurizing methane gas into previously moistened, then chilled, packed sand specimen (excess gas method). The excess gas was then replaced by water at high pressure. Afterward, a heating/cooling cycle was applied under undrained conditions, in order to completely dissociate gas hydrates and then recreate them inside the specimen. Finally, the pore pressure was reduced to the atmospheric pressure to dissociate gas hydrates. The whole process was performed in a magnetic resonance imaging (MRI) system, allowing the determination of water and/or gas and hydrate quantity (and spatial distribution) at various times. The MRI signal was finally analyzed to interpret various processes in sand sediment: initial hydrate formation, heating-induced hydrate dissociation, cooling-induced hydrate re-formation, and depressurizing-induced hydrate dissociation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.