Abstract

The exchange of Fe(3+), Tb(3+), In(3+), Ga(3+), and Al(3+) between the C-terminal metal-binding site of the serum iron transport protein transferrin and the low-molecular-mass serum chelating agent citrate has been studied at pH 7.4 and 25 degrees C. The removal of Ga(3+), In(3+), and Al(3+) follows simple saturation kinetics with respect to the citrate concentration. In contrast, removal of both Fe(3+) and Tb(3+) shows a combination of saturation and first-order kinetic behavior with respect to the citrate concentration. The saturation component is consistent with a mechanism for metal release in which access to the bound metal is controlled by a rate-limiting conformational change in the protein. The first-order kinetic pathway is very rapid for Tb(3+), and this is attributed to a direct attack of the citrate on the Tb(3+) ion within the closed protein conformation. It is suggested that this pathway is more readily available for Tb(3+) because of the larger coordination number for this cation and the presence of an aquated coordination site in the Tb(3+)-CO(3)-Tf ternary complex. There is relatively little variation in the k(max) values for the saturation pathway for Tb(3+), Ga(3+), Al(3+), and In(3+), but the k(max) value for Fe(3+) is significantly smaller. It is suggested that protein interactions across the interdomain cleft of transferrin largely control the release of the first group of metal ions, while the breaking of stronger metal-protein bonds slows the rate of iron release. The rates of metal binding to apotransferrin are clearly controlled in large part by the hydrolytic tendencies of the free metal ions. For the more amphoteric metal ions Al(3+) and Ga(3+), there is rapid protein binding, and the addition of citrate actually retards this reaction. In contrast, the nonamphoteric In(3+) ion binds very slowly in the absence of citrate, presumably due to the rapid formation of polymeric In-hydroxo complexes upon addition of the unchelated metal ion to the pH 7.4 protein solution. The addition of citrate to the reaction accelerates the binding of In(3+) to apoTf, presumably by forming soluble, mononuclear In-citrate complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.