Abstract

Low-temperature (6.5 K) microphotoluminescence near the intrinsic absorption edge of CdZnTe alloy single crystals is studied under conditions of non-resonant and resonant excitation by picosecond pulses. Characteristic relaxation times for free excitons and exciton-impurity complexes of various types are determined. A significant (by a factor of 4–8) decrease in the photoluminescence signal decay time of exciton-impurity complexes on neutral donors during the transition to the resonant excitation mode is detected. The detected sharp decrease in the photoluminescence signal decay time can indicate the manifestation of collective effects in this system of emitters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call