Abstract

The initiation of H2/O2/H2O mixture combustion when asymmetric vibrations in H2O molecules are excited by a resonant IR laser radiation is considered. It is shown that the vibrational excitation of the molecules gives rise to new efficient channels for the formation of chemically active O and H atoms and OH radicals. As a result, the chain mechanism of combustion in the mixtures is enhanced and, as a consequence, the induction time is cut and the ignition temperature is lowered. Even at a minor radiant energy flux delivered to the gas (Ein≈2.5 J/cm2), the ignition temperature of the stoichiometric H2/O2 mixture containing only 5% of H2O may become as low as 300 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.